Math2.org Math Tables: Table of Integrals

(Math)

Power of x.
[integral]xn dx = xn+1 (n+1)-1 + C
(n  -1)  Proof
[integral] x-1 dx = ln|x| + C

Exponential / Logarithmic
[integral] ex dx = ex + C
Proof 
[integral] bx dx = bx / ln(b) + C
Proof, Tip!
[integral]ln(x) dx = x ln(x) - x + C
Proof

Trigonometric
[integral] sin x dx = -cos x + C
Proof
[integral] csc x dx = - ln|csc x + cot x| + C
Proof
[integral] cos x dx = sin x + C
Proof
[integral] sec x dx = ln|sec x + tan x| + C
Proof
[integral] tan x dx = -ln|cos x| + C
Proof
[integral] cot x dx = ln|sin x| + C
Proof

Trigonometric Result
[integral] cos x dx = sin x + C
Proof
[integral] csc x cot x dx = - csc x + C
Proof
[integral] sin x dx = -cos x + C
Proof
[integral] sec x tan x dx = sec x + C
Proof
[integral] sec2 x dx = tan x + C
Proof
[integral]csc2 x dx = - cot x + C
Proof

Inverse Trigonometric
[integral] arcsin x dx = x arcsin x + [sqrt](1-x2) + C
[integral] arccsc x dx = x arccos x - [sqrt](1-x2) + C
[integral] arctan x dx = x arctan x - (1/2) ln(1+x2) + C

Inverse Trigonometric Result
 
[integral]  dx
[sqrt](1 - x2)
 = arcsin x + C
 
[integral]  dx 
sqrt(x2 - 1)
 = arcsec|x| + C
 
[integral]  dx 
1 + x2
 = arctan x + C
 
 
Useful Identities

arccos x = pi/2 - arcsin x 
(-1 <= x <= 1) 

arccsc x = pi/2 - arcsec x 
(|x| >= 1) 

arccot x = pi/2 - arctan x 
(for all x)

 

Hyperbolic
[integral] sinh x dx = cosh x + C
Proof
[integral] csch x dx = ln |tanh(x/2)| + C
Proof
[integral] cosh x dx = sinh x + C
Proof
[integral] sech x dx = arctan (sinh x) + C
[integral] tanh x dx = ln (cosh x) + C
Proof
[integral] coth x dx = ln |sinh x| + C
Proof



Click on Proof for a proof/discussion of a theorem.

 
To solve a more complicated integral, see The Integrator at http://integrals.com