| Math2.org Math Tables: Derivatives of Hyperbolics
 | 
| (Math) | 
 sinh(x) = cosh(x) : From the derivative of ex
sinh(x) = cosh(x) : From the derivative of ex 
Given: sinh(x) = ( ex - e-x )/2; 
cosh(x) = (ex + e-x)/2; 
 ( f(x)+g(x) ) =
 ( f(x)+g(x) ) = f(x) +
 f(x) +  g(x); 
Chain Rule;
 g(x); 
Chain Rule; 
 ( c*f(x) ) = c
( c*f(x) ) = c  f(x).
f(x). 
Solve:
sinh(x)=
( ex- e-x )/2 = 1/2
(ex) -1/2
(e-x)
= 1/2 ex + 1/2 e-x = ( ex + e-x )/2 = cosh(x)   Q.E.D
Proof of  Given: sinh(x) = ( ex - e-x )/2; cosh(x) = (ex + e-x)/2;  
Proof of  Given:  
Proof of  cosh(x) = sinh(x) : From the derivative of ex
cosh(x) = sinh(x) : From the derivative of ex
 ( f(x)+g(x) ) =
 ( f(x)+g(x) ) = f(x) +
 f(x) + g(x); Chain Rule;
 
g(x); Chain Rule;  ( c*f(x) ) = c
( c*f(x) ) = c  f(x).
f(x).
Solve:
 cosh(x)=
 cosh(x)=  ( ex + e-x)/2 = 1/2
 ( ex + e-x)/2 = 1/2 
 (ex) + 1/2
(ex) + 1/2  (e-x)
(e-x)= 1/2 ex - 1/2 e-x = ( ex - e-x )/2 = sinh(x)       Q.E.D.
 tanh(x)= 1 - tanh2(x) : from the derivatives of sinh(x) and cosh(x)
 tanh(x)= 1 - tanh2(x) : from the derivatives of sinh(x) and cosh(x)
 sinh(x) = cosh(x);
sinh(x) = cosh(x);  cosh(x) = sinh(x); tanh(x) = sinh(x)/cosh(x); Quotient Rule.
cosh(x) = sinh(x); tanh(x) = sinh(x)/cosh(x); Quotient Rule.
Solve:
 tanh(x)=
 tanh(x)=  sinh(x)/cosh(x)
 sinh(x)/cosh(x)= ( cosh(x) 
 sinh(x) - sinh(x)
sinh(x) - sinh(x)  cosh(x) ) / cosh2(x)
cosh(x) ) / cosh2(x)= ( cosh(x) cosh(x) - sinh(x) sinh(x) ) / cosh2(x) = 1 - tanh2(x)       Q.E.D.
 csch(x)= -coth(x)csch(x),
 csch(x)= -coth(x)csch(x),  sech(x) = -tanh(x)sech(x),
sech(x) = -tanh(x)sech(x),  coth(x) = 1 - coth2(x) : From the derivatives of their reciprocal functions
Given:
coth(x) = 1 - coth2(x) : From the derivatives of their reciprocal functions
Given:  sinh(x) = cosh(x);
sinh(x) = cosh(x);  cosh(x) = sinh(x);
cosh(x) = sinh(x);  tanh(x) = 1 - tanh2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule.
tanh(x) = 1 - tanh2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule.
 csch(x)=
 csch(x)=  1/sinh(x)= ( sinh(x)
 1/sinh(x)= ( sinh(x)  1 - 1
1 - 1  sinh(x))/sinh2(x) = -cosh(x)/sinh2(x) = -coth(x)csch(x)
 sinh(x))/sinh2(x) = -cosh(x)/sinh2(x) = -coth(x)csch(x) sech(x)=
 sech(x)=  1/cosh(x)= ( cosh(x)
 1/cosh(x)= ( cosh(x)  1 - 1
1 - 1  cosh(x))/cosh2(x) = -sinh(x)/cosh2(x) = -tanh(x)sech(x)
 cosh(x))/cosh2(x) = -sinh(x)/cosh2(x) = -tanh(x)sech(x) coth(x)=
 coth(x)=  1/tanh(x)= ( tanh(x)
 1/tanh(x)= ( tanh(x)  1 - 1
1 - 1  tanh(x))/tanh2(x) = (tanh2(x) - 1)/tanh2(x) = 1 - coth2(x)
 tanh(x))/tanh2(x) = (tanh2(x) - 1)/tanh2(x) = 1 - coth2(x)