Basic Operations
Complex Definitions of Functions and Operations
![\[a<sup>2</sup> + b<sup>2</sup> = (a + bi) (a - bi)\] \[a<sup>2</sup> + b<sup>2</sup> = (a + bi) (a - bi)\]](/math/tex/9271b47b9f3e9f4cafc2dc9f8e85da04.png)
(sum of squares)
![\[\text{If} \, z = r(\cos \theta + i \sin \theta) \,
\text{then} \, z<sup>n</sup> = r<sup>n</sup> ( \cos n \theta + i \sin n \theta ) \] \[\text{If} \, z = r(\cos \theta + i \sin \theta) \,
\text{then} \, z<sup>n</sup> = r<sup>n</sup> ( \cos n \theta + i \sin n \theta ) \]](/math/tex/8e671db515825a69b7ca860d3646da16.png)
(DeMoivre's Theorem)
if
![\[w = r(\cos \theta + i \sin \theta);n=integer\] \[w = r(\cos \theta + i \sin \theta);n=integer\]](/math/tex/9a40fb5b0a0e9345c9985df094e531ef.png)
then there are n complex nth roots (z) of w for k=0,1,..n-1
\[z(k) = r1/n [ \cos \frac{\theta + 2 \pi k}{n} + i \sin \frac{\theta + 2 \pi k}{n} ]\]