Math2.org Math Tables: Special Functions
|
| (Math) |

constant = 0.5772156649...
(x) = ![[integral] [integral]](/math//symbols/integral.gif)
tx-1 e-t dt
(Gamma function)
B(x,y) = ![[integral] [integral]](/math//symbols/integral.gif)
tx-1 (1-t)y-1dt (Beta function)
Ei(x) = ![[integral] [integral]](/math//symbols/integral.gif)
e-t/t dt (exponential integral) or it's variant, NONEQUIVALENT form:
Ei(x) =li(x) =+ ln(x) +
(e^t - 1)/t dt = gamma + ln(x) +
(n=1..inf)x^n/(n*n!)
![[integral] [integral]](/math//symbols/integral.gif)
1/ln(t) dt (logarithmic integral)![[integral] [integral]](/math//symbols/integral.gif)
sin(t)/t dt (sine integral) or it's variant, NONEQUIVALENT form:Si(x) =sin(t)/t dt = PI/2 -
sin(t)/t dt
![[integral] [integral]](/math//symbols/integral.gif)
cos(t)/t dt (cosine integral) or it's variant, NONEQUIVALENT form:Ci(x) = -cos(t)/t dt = gamma + ln(x) +
(cos(t) - 1) / t dt (cosine integral)
![[integral] [integral]](/math//symbols/integral.gif)
(cosh(t)-1)/t dt (hyperbolic cosine integral)![[integral] [integral]](/math//symbols/integral.gif)
sinh(t)/t dt (hyperbolic sine integral)
(error function)
dilog(x) = ![[integral] [integral]](/math//symbols/integral.gif)
ln(t) (1-t)-1 dt
Psi(n,x) = nth derivative of Psi(x)
W(x) = inverse of x ex
(laguerre polynomial degree n. (n) meaning nth derivative)
Dirichlet's beta function