# Math2.org Math Tables: Power Summations #2

(Math)
 Summation Expansion Equivalent Value Comments 1/n n=1 = 1 + 1/2 + 1/3 + 1/4 + ... diverges to see the gamma constant 1/n 2 n=1 = 1 + 1/4 + 1/9 + 1/16 + ... = (1/6) PI 2 = 1.64493406684822... see Expanisions of PI 1/n 3 n=1 = 1 + 1/8 + 1/27 + 1/81 + ... = 1.20205690315031... see the Unproved Theorems 1/n 4 n=1 = 1 + 1/16 + 1/81 + 1/256 + ... = (1/90) PI 4 = 1.08232323371113... see Expanisions of PI 1/n 5 n=1 = 1 + 1/32 + 1/243 + 1/1024 + ... = 1.03692775514333... see the Unproved Theorems 1/n 6 n=1 = 1 + 1/64 + 1/729 + 1/4096 + ... = (1/945) PI 6 = 1.017343061984449... see Expanisions of PI 1/n 7 n=1 = 1 + 1/128 + 1/2187 + 1/16384 + ... = 1.00834927738192... see the Unproved Theorems 1/n 8 n=1 = 1 + 1/256 + 1/6561 + 1/65536 + ... = (1/9450) PI 8 = 1.00407735619794... see Expanisions of PI 1/n 9 n=1 = 1 + 1/512 + 1/19683 + 1/262144 + ... = 1.00200839282608... see the Unproved Theorems 1/n 10 n=1 = 1 + 1/1024 + 1/59049 + 1/1048576 + ... = (1/93555) PI 10 = 1.00099457512781... see Expanisions of PI 1/n 2k n=1 = 1 + 1/2 2k + 1/3 2k + 1/4 2k + ... = (-1)k-1 ( 2 2k B(2k) PI 2k ) / ( 2(2k)! ) k is a positive integer. Bk are Bernoulli numbers. see Expanisions of PI