Math2.org Math Tables: Derivatives of Trig Functions

(Math)
(d/dx) sin(x) = cos(x)
(d/dx) cos(x) = -sin(x)
(d/dx) tan(x) = sec2(x)
(d/dx) csc(x) = -csc(x) cot(x)
(d/dx) sec(x) = sec(x) tan(x)
(d/dx) cot(x) = -csc2(x)


Proofs of Derivative of Trig Functions

Proof of (d-dx) sin(x) : algebraic Method

Given: lim(d->0) sin(d)/d = 1.
Solve:

(d-dx) sin(x) = lim(d->0) ( sin(x+d) - sin(x) ) / d
= lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d
= lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d
= sin(x) lim ( cos(d) - 1 )/d   +   cos(x) lim sin(d)/d
= sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) )   +   cos(x) lim sin(d)/d
= sin(x) lim ( cos2(d)-1 ) / ( d(cos(d)+1 )   +   cos(x) lim sin(d)/d
= sin(x) lim -sin2(d) / ( d(cos(d) + 1)   +   cos(x) lim sin(d)/d
= sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1)   +   cos(x) lim sin(d)/d
= sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x)       Q.E.D.

Proof of (d-dx) cos(x) : from the derivative of sine

This can be derived just like (d-dx) sin(x) was derived or more easily from the result of (d-dx) sin(x)

Given: (d-dx) sin(x) = cos(x); Chain Rule.
Solve:

cos(x) = sin(x + PI/2)
(d-dx) cos(x) = (d-dx) sin(x + PI/2)
= (d/du) sin(u) * (d-dx) (x + PI/2) (Set u = x + PI/2)
= cos(u) * 1 = cos(x + PI/2) = -sin(x)       Q.E.D.

Proof of (d-dx) tan(x) : from the derivatives of sine and cosine

Given: (d-dx) sin(x) = cos(x); (d-dx) cos(x) = -sin(x); Quotient Rule.
Solve:

tan(x) = sin(x) / cos(x)
(d-dx) tan(x) = (d-dx) sin(x)/cos(x)
= ( cos(x) (d-dx) sin(x) - sin(x) (d-dx) cos(x) ) / cos2(x)
= ( cos(x)cos(x) + sin(x)sin(x) ) / cos2(x)
= 1 + tan2(x) = sec2(x)       Q.E.D.

Proof of (d-dx) csc(x), (d-dx) sec(x), (d-dx) cot(x) : from derivatives of their reciprocal functions

Given: (d-dx) sin(x) = cos(x); (d-dx) cos(x) = -sin(x); (d-dx) tan(x) = sec2(x); Quotient Rule.
Solve:

(d-dx) csc(x) = (d-dx) 1/sin(x) = ( sin(x) (d-dx) (1) - 1 (d-dx) sin(x) ) / sin2(x) = -cos(x) / sin2(x) = -csc(x)cot(x)
(d-dx) sec(x) = (d-dx) 1/cos(x) = ( cos(x) (d-dx) (1) - 1 (d-dx) cos(x) ) / cos2(x) = sin(x) / cos2(x) = sec(x)tan(x)
(d-dx) cot(x) = (d-dx) 1/tan(x) = ( tan(x) (d-dx) (1) - 1 (d-dx) tan(x) ) / tan2(x) = -sec2(x) / tan2(x) = -csc2(x)       Q.E.D.