So, let
x1=25.65665403510586285599072933607445153794770546058072048626118194900973217186212880099440071247379896...,
x2=25.65248234360905618039719248115221022016494628424517244329671894861415553029321073438487828134403347...,
x3 =25.65761722706287108794710554508433209225296965507274176587991048009809769217563540539803575569277386...,
and
x4=25.66273322482106030200256088916637844238842909746268912899596894805459817617989507564650951482436947...
Then
\[\sum _{n=1}^{\infty} (-1)^n \left(n^{\text{x1}/n}-1\right)=MRB,\]
\[\sum _{n=1}^{\infty} (-1)^n \left(n^{\text{x2}/n}-1\right)=1,\]
\[\sum _{n=1}^{\infty} (-1)^n \left(n^{\text{x3}/n}-1\right)=0,\]
and
\[\sum _{n=1}^{\infty } (-1)^n \left(n^{\text{x4}/n}-1\right)=-1.\]
...All within a domain of 25.652<x<25.663 for a range of -1<f(x)<1. I wonder why the function is so sensitive to x and if we can use that to calculate digits of the MRB constant faster? I think the only hope for that would be if we found an useful x that was known to be algebraic -- other than x=1 (which we know gives MRB). A rational x in that neighborhood of 25 might even be better!
There's more to come!