Function |
Summation Expansion |
Comments |
ln (x) |
= |
(x-1)n
n |
= (x-1) - (1/2)(x-1)2 + (1/3)(x-1)3 + (1/4)(x-1)4 + ... |
Taylor Series Centered at 1
(0 < x <=2) |
ln (x) |
= |
((x-1) / x)n
n |
= (x-1)/x + (1/2) ((x-1) / x)2 + (1/3) ((x-1) / x)3
+ (1/4) ((x-1) / x)4 + ...
|
(x > 1/2) |
ln (x) |
=ln(a)+ |
(-1)n-1(x-a)n
n an |
= ln(a) + (x-a) / a - (x-a)2 / 2a2 + (x-a)3
/ 3a3 - (x-a)4 / 4a4 + ... |
Taylor Series
(0 < x <= 2a) |
ln (x) |
=2 |
((x-1)/(x+1))(2n-1)
(2n-1) |
= 2 [ (x-1)/(x+1) + (1/3)( (x-1)/(x+1) )3 + (1/5)
( (x-1)/(x+1) )5 + (1/7) ( (x-1)/(x+1) )7 + ... ] |
(x > 0) |